NAAC "C" Grade "Jeevandeep Shaikshanik Sanstha Poi's" ARTS, COMMERECE & SCIENCE COLLEGE, GOVELI # CRITERIA -II NAAC "C" Grade "Jeevandeep Shaikshanik Sanstha Poi's" ARTS, COMMERECE & SCIENCE COLLEGE, GOVELI # TEACHING LEARNING AND EVALUATION # NAAC "C" Grade "Jeevandeep Shaikshanik Sanstha Poi's" ARTS, COMMERECE &SCIENCE COLLEGE, GOVELI #### 2.3. Teaching-Learning Processs #### **INDEX** | SR. NO | ТОРІС | PAGE NUMBER | |--------|---------------------------------------|-------------| | 1. | Student centric method write up | 3-4 | | 2. | Full time teacher list | (5)? | | 3. | Department wise Lesson plan | 6-505 | | 4. | Student centric method activity photo | 507-530 | NAAC "C" Grade "Jeevandeep Shaikshanik Sanstha Poi's" ## ARTS, COMMERCE &SCIENCE COLLEGE, GOVELI # 2.3.1. STUDENT CENTRIC METHODS WRITE UP # 2.3.1 Student centric methods, such as experiential learning, participative learning and problem solving methodologies are used for enhancing learning experiences Response: Learning at the college has always been student-centric. The focus is on knowledge of Transfer and learning through students' active participation and involvement. The faculty provides a platform for students to explore independently, learn through self-study and from their peers, guide them to develop effective and lifelong skills. The following latest teaching and learning methodologies are used to motivate students to learn for higher retention of knowledge through better understanding #### Regular learning and experimental learning: The faculty employs theoretical lecture methods, practical class-rooms seminars computer-assisted learning, fieldwork, and other ways whenever and wherever necessary for teaching-learning and evaluation of the students. #### Participative or experiential learning:- Field-based experiential learning like service learning and class-based experiential learning like role play, games, case studies, etc active learning. The faculty adopts active learning by involving students in the learning process directly through following activities like quizzes, debate, group discussions model making essay elocution, mini-project, etc. #### Industrial tours/study tours:- The management makes the students experience the real world by visiting the industry, study tours, and held work. #### blem-based learning /project-based learning:- In project/competition participating students are assigned different tasks, assignments, activities in which students engage in complex challenging problems and collaboratively work toward their solutions by using interdisciplinary knowledge. The institute also encourages and guides the students to participate in the co-curricular and extra co-curricular activities, and national-level competitions organized by other institutes and universities. | SR.NO. | COURSE | TEACHING METHOD USED | |--------|------------|------------------------| | 1. | F" | Demonstration work | | | B.Sc. | You-tube | | | | z- library | | | | industrial visit | | | | participating learning | | 2. | | ICT Enabled Teaching | | | B.com | Problem solving method | | | D.COM | You- tube | | | | PPT | | 3. | | Group Discussion | | | B.A | Game | | | | Case study | | 4. | | ICT Enabled Teaching | | | BAF | Problem solving method | | | D/XI | You- tube | | | | PPT | | _ | | Oral | | 5. | BMM | Group Discussion | | | | PPT | | 6. | | Case Study | | | BMS | Group Discussion | | | | industrial visit | | | | Group Discussion | | | | PPT | | 7. | IT | industrial visit | | | | Reachearch Project | | | | video lectures | | 8. | | Group Discussion | | |------|--------|------------------------|--| | | M.A | Game | | | | TATOTA | Reachearch Project | | | 0 | | Field project | | | 9. | | ICT Enabled Teaching | | | | M.COM | Problem solving method | | | | | You- tube | | | | | PPT | | | | | Guest lecture | | | 10. | | Demonstration work | | | | | You-tube | | | 3756 | | z- library | | | | M.Sc | industrial visit | | | | | participating learning | | | | | Field project | | | | | Reachearch Project | | Jeevandeep Shaiki hanik Sanstha's Arts, Commerce & Schoole College, Goveli, Goveli, Tal. Kalyan, Dist. Thane - 421103 #### Estd. 2004 NAAC "C" Grade #### "Jeevandeep Shaikshanik Sanstha Poi's" #### ARTS, COMMERECE &SCIENCE COLLEGE, GOVELI **LESSON PLAN TEACHERS LIST (2021-22)** | SR.NO | DEPARTMENT | DEPARTMENT | |-------|-------------------|-------------------------| | | | PROF. H.V.SOSHATE | | | | PROF. D.G.KAMBLE | | 1. | | PROF. B.G.PAWAR | | | | PROF. TEJAL BALERAO | | | | PROF. DIPALI TEMBHE | | | | PROF. S.KAKADE | | | B.A | PROF. MEENA MULIK | | | D.A | PROF. L.N. BHOIR | | | | PROF. V.HERODE | | | | PROF. R.R. KANSE | | | | PROF. GOURKSHANATH TARE | | | | PROF. NINAD BHARTI | | | | PROF. P. JADHAV | | | | PROF. JAYA DESHMUKH | | | в.сом | PROF. B.C. CHAUDHARI | | 7 | | PROF. RUPALI TARE | | 2. | | PROF. V.G.SONAR | | | | PROF. POOJA BIRAJDAR | | | | PROF. D.G. CHAVAN | | | | PROF. RUPALI TARE | | 3. | B.A.F | PROF. POOJA BIRAJDAR | | | | PROF. MAYURI KAMBLE | | | | PROF. RUCHI SHUKALA | | | | PROF. SHUBHAM CHAVAN | | | | PROF. A.S. GAIKAR | | 4. | B.SC | PROF. RUPALI MAGAR | | | D. 5C | PROF. P.H.PATIL | | | | PROF. Y.B.TRIBHUVANE | | | | PROF. P.R.BHOSALE | | | | PROF. SUMIT FAWARE | | | | PROF. CHINMAY GURAV | | 5. | B.SC (IT) | PROF. VAIBHAV TARE | | | D. 5C (11) | PROF. PRAVIN GHARE | | | | PROF. POOJA ISAME | | | | PROF. B.SINGH | | 6. | B.M.S | PROF. N.B.GHODVINDE | | | | PROF. U.B.GAIKAR | | 7. | B.M.M | PROF. GEETA GAIKAR | | | TOOTATOTAT | PROF. RAHUL TAUR | **PRINCIPAL** Jeevandeep Shaikshanik Sanstha's Arts, Commerce & Science College Goveli, Tal. Kalyan, Dist. Thane - 421103 (Affiliated to University of Mumbai) Goveli, Tal-Kalyan, Dist-Thane 421301 #### **COURSE PLANNING** #### COURSE TITLE:- T.Y.B.Sc (ORGANIC CHEMISTRY CHEMISTRY-III) #### **❖ INTENT/RATIONALE:-** Organic chemistry is important because it is the study of life and all of the chemical reactions related to life. Several careers apply an understanding of organic chemistry, such as doctors, veterinarians, dentists, pharmacologists, chemical engineers, and chemists. Organic chemistry plays a part in the development of common household chemicals, foods, plastics, drugs, and fuels most of the chemicals part of daily life. Organic compounds are all around us. Many modern materials are at least partially composed of organic compounds. They're central to economic growth, and are foundational to the fields of biochemistry, biotechnology, and medicine. Examples of where you can find organic compounds include agrichemicals, coatings, cosmetics, detergent, dyestuff, food, fuel, petrochemicals, pharmaceuticals, plastics, and rubber. #### **COURSE OUTCOME:** | COURSE NUMBER
(CO) | DESCRIPTION OF COURSE OUTCOME | |-----------------------|--| | CO 1 | To understand the Mechanism of organic reactions | | CO 2 | Difference between thermal and photochemical reactions. Jablonski diagram, singlet and triplet states, allowed and forbidden transitions, fate of excited molecules, photosensitization. | | CO 3 | Photochemistry of carbonyl compounds: Norrish I, Norrish II cleavages. Photo reduction | | CO 4 | General introduction & scope, meaning & examples of insecticides, herbicides, fungicide, rodenticide, pesticides, plant growth regulators | | CO 5 | Synthesis & application of IAA (Indole Acetic Acid) & Endosulphan | | CO 6 | Reactivity and preparation of pyridine-N-oxide, quinoline and iso-quionoline | | CO 7 | Reactions of quinoline and isoquinoline; oxidation, reduction, nitration, halogenation | #### * RELATED PROGRAM OUTCOME: | PROGRAM
OUTCOME NUMBER
(PO) | DESCRIPTION OF PROGRAM OUTCOME | |-----------------------------------|---| | PO 1 | Demonstrate; solve an understanding of major concept in all discipline chemistry. | | PO 2 | Create an awareness of impact of chemistry on the environment, society and development outside the scientific development. | | PO 3 | To develop skill to work in chemical environment safely and correctly. | | PO 4 | Skill in Planning and conducting advanced chemical experiment and applying the structure chemical characterization techniques. | | PO 5 | Create an awareness of impact of chemistry on the environment, society and development outside the scientific development. | | PO 6 | Understanding various concept and theories providing the strong academic Foundation. | | PO 7 | To understanding the different organization criteria which is necessary to work in different position for example if candidate work in pharmaceutical company should have knowledge of FDA. If candidate worked in food industry it should have knowledge of FSSAI Guidelines | #### * COURSE OUTCOME & PROGRAM OUTCOME MAPPING: | COURSE
OUTCOME
NO. | DESCRIPTION OF COURSE OUTCOME | DESCRIPTION OF PROGRAM OUTCOME | |--------------------------|--|--| | CO 1 | To understand the Mechanism of organic reactions | Demonstrate; solve an understanding of major concep in all discipline chemistry. | | CO 2 | Difference between thermal and photochemical reactions. Jablonski diagram, singlet and triplet states, allowed and forbidden transitions, fate of excited molecules, photosensitization. | Create an awareness of impact of chemistry on the environment, society and development outside the scientific development. | | CO 3 | Photochemistry of carbonyl compounds:
Norrish I, Norrish II cleavages. Photo
reduction | To develop skill to work in chemical environment safely and correctly. | | CO 4 | General introduction & scope, meaning & examples of insecticides, herbicides, fungicide, rodenticide, pesticides, plant growth regulators | Understanding various concept and theories providing the strong academic Foundation. | | CO 5 | Synthesis & application of IAA (Indole Acetic Acid) & Endosulphan | Skill in Planning and conducting advanced chemical experiment and applying the structure chemical characterization techniques. | | CO 6 | Reactivity and preparation of pyridine-Noxide, quinoline and iso-quionoline | Demonstrate; solve an understanding of major concept in all discipline chemistry. | | CO 7 | Reactions of quinoline and isoquinoline; oxidation,reduction,nitration,halogenation | To understanding the different organization criteria which is necessary to work in different position for example if candidate work in pharmaceutical company should have knowledge of FDA. If candidate worked in food industry it should have knowledge of FSSAI | | | Guidelines | | |--|------------|--| | | | | #### ❖ COURSE OUTCOME -TEACHING METHOD -ASSESSMENT METHOD: | (CO)
NUMBER | DESCRIPTION OF COURSE OUTCOME | TEACHING METHOD | ASSESSMENT
METHOD | |----------------|---|-----------------------------------|----------------------| | CO 1 | To understand the Mechanism of organic reactions | ICT | Assignment | | CO 2 | reactions. Jablonski diagram, singlet and triplet states, allowed and forbidden transitions, fate of excited molecules, photosensitization. | | Class test | | CO 3 | Photochemistry of carbonyl compounds: Norrish I,
Norrish II cleavages. Photo reduction | ish II cleavages. Photo reduction | | | CO 4 | General introduction & scope, meaning & examples of insecticides, herbicides, fungicide, rodenticide, pesticides, plant growth regulators | Project base learning | Project work | | CO 5 | Synthesis & application of IAA (Indole Acetic Acid) & Endosulphan | Integrated learning | Assignment | | CO 6 | Reactivity and preparation of pyridine-N-oxide, quinoline and iso-quionoline | ICT | Assignment | | CO 7 | Reactions of quinoline and isoquinoline; oxidation,reduction,nitration,halogenation | Self directed learning | Internal test | #### ***** LEARNING ACTIVITIES: | (CO)
NUMBER | DESCRIPTION OF COURSE OUTCOME | LEARNING ACTIVITY FOR EXTENSION OF OPPORTUNITY AND REHERSAL | |----------------|---|---| | CO 1 | To understand the Mechanism of organic reactions | | | CO 2 | Difference between thermal and photochemical | Real time reaction | | | reactions. Jablonski diagram, singlet and triplet states, allowed and forbidden transitions, fate of excited molecules, photosensitization. | Concept mapping | | CO 3 | Photochemistry of carbonyl compounds: Norrish I,
Norrish II cleavages. Photo reduction | | | CO 4 | Conoral internal diagram | Group disscussion | | CO 4 | General introduction & scope, meaning & examples of insecticides, herbicides, fungicide, rodenticide, pesticides, plant growth regulators | | | CO 5 | Synthesis & application of IAA (Indole Acetic Acid) & Endosulphan | Internal test | | | | PPT | | CO 6 | Reactivity and preparation of pyridine-N-oxide, quinoline and iso-quionoline | | |------|--|---------------| | CO 7 | Reactions of quinoline and isoquinoline; | Internal test | | | oxidation, reduction, nitration, halogenation | Internal test | #### * REFERENCE BOOKS/JOURNAL/WEB SITE/YOU TUBE etc... | DECOL | The state of the cities | |----------------|--| | RESOURSES | NAME OF BOOKS / LINKS | | BOOKS | HIMALAYA PUBLICATION AND SHET PUBLICATION | | YOUTUBE VEDIOS | https://youtu.be/Ih7tQ7rY2Wc | | | https://youtu.be/ IEWeanbfnQ | | | https://youtu.be/JROZc-9DayM | | | https://youtu.be/TOEusBA6G04 | | | https://youtu.be/KvQ8iVo3YbU | | | ====================================== | (Affiliated to University of Mumbai) Goveli, Tal-Kalyan, Dist-Thane 421301 #### LESSON PLAN COURSE TITLE :- T.Y.B.Sc (ORGANIC CHEMISTRY-III) SUBJECT:- (ORGANIC CHEMISTRY-III) #### UNIT NO. 1 :- 1.1 Mechanism of organic reactions (10 L) | ESSON
PLAN
NO. | COURSE OUTCOME | TOPIC/SUB TOPIC NAME | TEACHING
METHOD | TEACHING
MATERIAL | FEED-BACK | |----------------------|--|---|----------------------------|-----------------------------|---| | 1. | to differentiate fission
and fusion term along
with elecrophile and
nucleophile | The basic terms & concepts: bond fission, reaction intermediates, electrophiles & nucleophiles, ligand, base, electrophilicity vs. acidity & nucleophilicity vs basicity. | ICT | PPT | students can
listencarefully
understand
electrophilicity
acidity &
nucleophilicity
vs basicity. | | 2. | to describe the neighbouring group participation with mechanism | Neighbouring group
participation in nucleophilic
substitution reactions:
participation of lone
pair of electrons, kinetics and
stereochemical outcome. | Participator
y learning | Board,
Chalk and
talk | students got
knowledge
about
Neighbouring
group
participation | | 3. | to summarise the nucleophilic substitution reaction in acid and basic compound | Acyl nucleophilic substitution (Tetrahedral mechanism): Acid catalyzed esterification of carboxylic acids (AAC2) | Self directed learning | Youtube | Students can give answer asking related | | 4. | to understand the
nucleophilic substitution
reaction in acid and basic
compound | Acyl nucleophilic substitution (Tetrahedral mechanism): base promoted hydrolysis of esters (BAC2). | Project base learning | Chalk and talk | students can
show interest to
clarify concept
of Acyl
nucleophilic | | | to recall the pericyclc reaction and also describe the classification of pericyclic reaction | Pericyclic reactions, classification and nomenclature | Integrated learning | Videos | substitution
students can
listen carefully | | | to differentiate Electro cyclic reactions | Electro cyclic reactions (ring opening and ring closing), cycloaddition, sigma tropic | Participator
y learning | Board,
Chalk and
talk | students can
listencarefully
understand
Electro cyclic
reactions. | | | to understand the Rearrangement, group transfer reactions | Rearrangement, group transfer reactions, cheletropic reaction | Participator
y learning | Board,
Chalk and
talk | students got
knowledge
about, group
transfer | | 8. | to describe the Pyrolytic elimination Cope, with mechanism | Pyrolytic elimination: Cope, | Integrated learning | Videos | reactions, cheletropic reaction students can listen carefully | |-----|--|---|---------------------|--------|---| | 9. | to recall the Pyrolytic elimination and also describe Chugaev reaction | Pyrolytic elimination Chugaev, | ICT | PPT | students can
easily
differentiate
chugaev | | 10. | to describe Pyrolytic elimination pyrolysis of acetates | Pyrolytic elimination pyrolysis of acetates | ICT | PPT | reaction
students can
listen carefully | SUBJECT TEACHER HEAD OF DEPARTMENT Jeevandeep Shair Cipal Jeevandeep Shair Cipal Arts, Commerce & Schnee College, Goveli, Goveli, Tal. Kalyan, Dist. Thane - 421103 (Affiliated to University of Mumbai) Goveli, Tal-Kalyan, Dist-Thane 421301 #### LESSON PLAN COURSE TITLE :- T.Y.B.Sc (ORGANIC CHEMISTRY-III) SUBJECT:- (ORGANIC CHEMISTRY-III) UNIT NO. 1:- 1.2 Photochemistry (5L) | LESSON
PLAN
NO. | COURSE OUTCOME | TOPIC/SUB TOPIC
NAME | TEACHING
METHOD | TEACHING
MATERIAL | FEED-BACK | |-----------------------|---|--|-------------------------|--------------------------|--| | 1. | to describe the Jablonski diagram, singlet and triplet states, allowed and forbidden transitions, | Introduction: Difference
between thermal and
photochemical
reactions. Jablonski
diagram, singlet and
triplet states, allowed
and forbidden
transitions, | Integrated learning | PPT | students can
listencarefully
understand
Jablonski
diagram | | 2. | to recall fate of excited molecules, photosensitization. | fate of excited molecules, photosensitization. | Participator y learning | Board, Chalk
and talk | students got
knowledge about
photosensitizati | | 3. | to knows the photo isomerization, photochemical rearrangement of 1,4-dienes (di- π methane) | Photochemical reactions of olefins: photo isomerization, photochemical rearrangement of 1,4-dienes (di- π methane) | Self directed learning | You tube | on. Students can give answer asking related question | | 4. | to summarised Photochemistry of carbonylcompound Norrish I, Norrish II | Photochemistry of carbonylcompound Norrish I, Norrish II | Project base learning | Chalk and talk | Students can
show interest to
clarify concept of
Norrish I,
Norrish II | | | reaction with suitable example. | Photochemistry of carbonylcompound Photo reduction (e.g.benzophenone to benzpinacol) | ICT | Videos | students can listen carefully | SUBJECT TEACHER Jeevandeep PRINCIPAL Arts, Commerce & Science College, Goveli, Tal. Kalyan, Dist. Thane - 421103 HEAD OF DEPARTMENT (Affiliated to University of Mumbai) Goveli, Tal-Kalyan, Dist-Thane 421301 #### LESSON PLAN COURSE TITLE :- T.Y.B.Sc (ORGANIC CHEMISTRY-III) SUBJECT:- (ORGANIC CHEMISTRY-III) #### UNIT NO. 2:- 2.1 Stereochemistry I (5L) | ,——— | | | | | | |-----------------------|--|---|---------------------------|-----------------------------|--| | LESSON
PLAN
NO. | COURSE OUTCOME | TOPIC/SUB TOPIC
NAME | TEACHING METHOD | TEACHING
MATERIAL | FEED-BACK | | 1. | to understand Molecular chirality and elements of symmetry | Molecular chirality and elements of symmetry: | ICT | Vedios | students can
listencarefully
andunderstand
Molecular
chirality | | 2. | Students would classify Mirror plane symmetry, inversion center | Mirror plane
symmetry,
inversion center, | Participatory
learning | Board,
Chalk and
talk | students got
knowledge
about
symmetry, | | 3. | to know the chirality of compound and stereogenic center | Chirality of compounds without a stereo genic center: cummulenes | Self directed learning | You tube | Students can
give answer
asking related
question | | 4. | to differentiate the chirality of compound and stereogenic center biphenyls . | Chirality of compounds without a stereo genic center: biphenyls. | Project base learning | Chalk and talk | Students can show interest to clarify | | 5. | to describe the symmetry concept along with inversion centre | Molecular chirality
and elements of
symmetry:inversion
center, | Integrated learning | Board
Chalk | students can
listen
carefully | SUBJECT TEACHER Jeevande PRINCIPAL Arts, Commerce & Science College, Coveli. Goveli, Tal. Kalyan, Dist. Thane - 421103 HEAD OF DEPARTMENT (Affiliated to University of Mumbai) Goveli, Tal-Kalyan, Dist-Thane 421301 #### LESSON PLAN COURSE TITLE :- T.Y.B.Sc (ORGANIC CHEMISTRY-III) SUBJECT:- (ORGANIC CHEMISTRY-III) #### UNIT NO. 2:- 2.2 Agrochemicals (4L) | PLAN
NO. | COURSE OUTCOME | TOPIC/SUB TOPIC NAME | TEACHING
METHOD | TEACHING
MATERIAL | FEED-BACK | |-------------|--|--|------------------------|-----------------------------|--| | 1. | to explain General introduction & scope, meaning & examples of agrochemicals | General introduction & scope, meaning & examples of insecticides, herbicides, fungicide, rodenticide, pesticides, plant growth regulators. | Self directed learning | PPT | students can
listen carefully
and understand
example of
insecticides | | 2. | to understand Bio pesticides likes Neem oil & Karanj oil. | Bio pesticides – Neem oil & Karanj oil. | Participatory learning | Board,
Chalk and
talk | students got
knowledge
about Bio
pesticides | | 3. | to memmorised Advantages & disadvantages of agrochemicals | Advantages & disadvantages of agrochemicals | ICT | Videos | students get
interest to
understand
Advantages
&disadvantage
ofagrochemical | | 4 | to explain the Synthesis & application of IAA (Indole Acetic Acid) & Endosulphan | Synthesis & application of IAA (Indole Acetic Acid) & Endosulphan, | Self directed learning | | Students can
give answer
asking related
question | SUBJECT TEACHER HEAD OF DEPARTMENT Jeevande PRINCIPAL Arts, Commerce & Schoole College, Cavell, Goveli, Tal. Kalyan, Dist. Thane - 421103 (Affiliated to University of Mumbai) Goveli, Tal-Kalyan, Dist-Thane 421301 #### LESSON PLAN COURSE TITLE :- T.Y.B.Sc (ORGANIC CHEMISTRY-III) SUBJECT:- (ORGANIC CHEMISTRY-III) UNIT NO. 2:- 2.3 Heterocyclic chemistry: (6 L) | LESSON | COURSE OUTCOME | TOPIC/SUP TOPIC NAME | | | | |-------------|---|---|----------------------------|--------------------------|---| | PLAN
NO. | COUNTRY OF TECHNIE | TOPIC/SUB TOPIC NAME | TEACHING
METHOD | TEACHING
MATERIAL | FEED-BACK | | 1. | to construct Reactivity of pyridine-N-oxide, quinoline and iso-quionoline. | Reactivity of pyridine-N-oxide, quinoline and iso-quionoline. | ICT | Videos | Students can
give answer
asking
related
question | | 2. | to formulate the synthesis pyridine-N-oxide, quinoline (Skraup synthesis) | Preparation of pyridine-N-oxide, quinoline (Skraup synthesis) | Participator
y learning | Board, Chalk
and talk | students can
easily
understood
preparation
of quinoline | | 3. | to describe the synthesis
Preparation of iso-
quinoline (Bischler-
Napieralski synthesis). | Preparation of iso-quinoline (Bischler-Napieralski synthesis). | Self directed learning | Youtube | students can
listen
carefully
and solve
synthesis | | 4. | to explain the Reactions of of pyridine-N-oxide: halogenation, nitration and reaction with NaNH2/liq.NH3, | Reactions of pyridine-N-oxide: halogenation, nitration and reaction with NaNH2/liq.NH3, | Project base learning | Chalk and talk | students get
interest to
solve the
problems. | | 5. | to diferentiate the
Reactions of quinoline
and isoquinoline | Reactions of quinoline and isoquinoline; oxidation, reduction, nitration, | Integrated learning | Board
Chalk | students got
knowledge
about
reaction of
quinoline | | 6. | Students would be able to understand different Reactions of quinoline and isoquinoline; halogenation | Reactions of quinoline and isoquinoline; halogenation and reaction with NaNH2/liq.NH3,n-BuLi. | Descriptive leaning | PPT | Students can give answer asking related question | SUBJECT TEACHER HEAD OF DEPARTMENT Jeevande PRINCIPAL Arts, Commerce & Self nee College, Govell, Govell, Tal. Kalyan, Dist. Thane - 421103 (Affiliated to University of Mumbai) Goveli, Tal-Kalyan, Dist-Thane 421301 #### LESSON PLAN COURSE TITLE :- T.Y.B.Sc (ORGANIC CHEMISTRY-III) SUBJECT:- (ORGANIC CHEMISTRY-III) #### <u>UNIT NO. 3 :- 3.1 IUPAC (5 L)</u> | PLAN
NO. | COURSE OUTCOME | TOPIC/SUB TOPIC
NAME | TEACHING
METHOD | TEACHING
MATERIAL | FEED-BACK | |-------------|---|---|---------------------------|-----------------------------|--| | 1. | Students would be able to reconcile different rules of Bicyclic compounds like spiro, fused compound | IUPAC Systematic
nomenclature of
Bicyclic compounds –
spiro, fused | ICT | Vedios | Students can
give answer
asking
related | | 2. | Students would be able to construct nomenclature of bridged (upto 11 carbon atoms) – saturated and unsaturated compounds. | IUPAC Systematic
nomenclature of
bridged (upto 11 carbon
atoms) – saturated
and unsaturated
compounds. | Participatory
learning | Board,
Chalk and
talk | question Students analysed bridged compound easily. | | 3. | to understand IUPAC Systematic nomenclature of Biphenyls. | IUPAC Systematic nomenclature of Biphenyls | Self directed learning | Youtube | student can | | 4. | to reconcile different rules for identification of cummulene with to triple bond | IUPAC Systematic nomenclature of Cummulenes with upto 3 double bonds | Project base
learning | Chalk and talk | carefully. Students can give answer asking related | | 5. | to understand IUPAC Systematic nomenclature systematic rules. | IUPAC Systematic
nomenclature of
Quinolines and
isoquinolines | Integrated learning | | Student got information about nomenclature of Quinolines | SUBJECT TEACHER Jeevandeen Sincipal Arts, ConPRINCIPAL anik Sansthals Goveli, Tal. Kalyan, Dist. Thane - 421103 HEAD OF DEPARTMENT (Affiliated to University of Mumbai) Goveli, Tal-Kalyan, Dist-Thane 421301 #### LESSON PLAN COURSE TITLE :- T.Y.B.Sc (ORGANIC CHEMISTRY-III) SUBJECT:- (ORGANIC CHEMISTRY-III) #### <u>UNIT NO. 3</u>:- 3.2 Synthesis of organic compounds (10L) | LESSON
PLAN NO. | | TOPIC/SUB TOPIC NAME | TEACHING
METHOD | TEACHING
MATERIAL | | |--------------------|---|--|------------------------|-----------------------------|---| | 1. | To prepare Linear and convergent synthesis, To identify concept of chemoselectivity and regioselectivity. | Introduction: Linear and convergent synthesis, criteria for an ideal synthesis, concept of chemoselectivity and regioselectivity with examples, calculation of yields. | ICT | Videos | Student got information about Linear andconvergen synthesis, | | 2. | to construct Multicomponent
Synthesis like Mannich reaction
and Biginelli reaction | Multicomponent
Synthesis: Mannich
reaction and Biginelli
reaction. Synthesis with
examples(nomechanism) | Participatory learning | Board,
Chalk and
talk | Students can
easily identify
Mannich
reaction and
Biginelli | | 3. | to summarise the basic concept
of green chemistry along with
basic twelve principle | Green chemistry and synthesis:Introduction: Twelve principles of green chemistry, | Self directed learning | Youtube | reaction. Students can give answer asking related question | | 4. | To describe concept of atom economy and E-factor, calculations and their significance, | concept of atom economy
and E-factor,
calculations and their
significance, numerical
examples. | Project base learning | Chalk and talk | Students
analysed
economy and E
factor easily. | | 5. | to memorised the green solvent
and green starting materialand
also distinguish between
chemical and green solvent. | Green reagents: dimethyl carbonate. Green starting materials: D-glucose | Integrated learning | | students get ide
about Green
starting
materials : D- | | | Students would be able to prepare contract account and understand treatment of profit on incomplete contracts. | iii) Green solvents :
supercritical CO2 | Discriptive leaning | PPT | glucose Student got information about Green solvents: supercritical CO2 | | 7. | to understand the planning of synthesis of nitroaniline and effect of aniline | Planning of organic synthesis of nitroanilines. (o&p) | ICT | Videos | Students can easily identify Planning of organic synthesis ofnitroanilines (o&p) | |-----|---|--|---------------------|----------------|--| | 8. | to prepare Planning of organic
synthesis of halobenzoic
acid.(o&p) | Planning of organic synthesis of halobenzoic acid.(o&p) | Integrated learning | Board
Chalk | student listen carefully. | | 9. | to construct Planning of organic synthesis Alcohols (primary / secondary / tertiary) using Grignard reagents. | Planning of organic
synthesis Alcohols
(primary / secondary /
tertiary) using Grignard
reagents. | Descriptive leaning | PPT | Students can easily identify Planning of organic synthesis Alcohols | | 10. | Students would be able to prepare Planning of organic synthesis Alkanes (using organo lithium compounds) | Planning of organic synthesis Alkanes (using organo lithium compounds) | ICT | Videos | Students can give answer asking related question | SUBJECT TEACHER HEAD OF DEPARTMENT PRINCIPATAI Jeevandeep Shaikshanik Sanatha s Arts, Commerce & Science College, Sve I. Goveli, Tal. Kalyan, Dist. Thane - 421103